Concrete Mathematics: Exploring Sums

Anmol Sakarda Nhat Pham

May 20, 2018

Anmol Sakarda, Nhat Pham

Concrete Mathematics: Exploring Sums

May 20, 2018 1 / 24

Outline

1 Abstract

- 2 Sums and Recurrences
- 3 Manipulating Sums
- 4 Multiple Sums
- 5 Finite and Infinite Calculus

6 Infinite Series

In this paper, we explore various methodologies to calculate sums. We begin by looking at simple methods: converting sums into recurrences. We proceed to discuss common manipulations, such as using the repertoire method or perturbation. Finally, we conclude by extrapolating sums to both finite and infinite calculus mainly by building integrals.

The sum

$$S_n = \sum_{k=0}^n a_k$$

is the recurrence

$$S_0 = a_0$$
$$S_{n-1} + a_n$$

for n > 0

Therefore, sums can be evaluated in closed form by solving recurrences. Assuming a_n equals a constant plus a multiple of n, the recurrence above can be rewritten as

$$R_0 = \alpha$$
$$R_n = R_{n-1} + \beta + \gamma n$$

for n > 0 Thus, we can generalize a solution such that:

$$R(n) = A(n)\alpha + B(n)\beta + C(n)\gamma$$

Manipulating Sums

Distributive Property

$$\sum_{k\in K} ca_k = c\sum_{k\in K} a_k$$

Associative Property

$$\sum_{k\in K}(a_k+b_k)=\sum_{k\in K}a_k+\sum_{k\in K}b_k$$

Commutative Property

$$\sum_{k\in K} (a_k) = \sum_{p(k)\in K} a_{p(k)}$$

Anmol Sakarda, Nhat Pham

Iverson Convention

From any logical statements made in middle of a formula, the values 0 or 1 can be obtained.

The following example demonstrates an important rule for combining different sets of indices. If K and K' are any sets of integers, then

$$\sum_{k\in \mathcal{K}} a_k + \sum_{k\in \mathcal{K}'} a_k = \sum_{k\in \mathcal{K}\cup \mathcal{K}'} a_k + \sum_{k\in \mathcal{K}\cap \mathcal{K}'} a_k$$

This is derived from the general formulas

$$\sum_{k\in K}a_k=\sum_ka_k[k\in K]$$

and

$$[k \in K] + [k \in K'] = [k \in K \cap K'] + [k \in K \cup K']$$

We use this method to either combine 2 almost disjoint index sets or to split off a single term from a set.

Anmol Sakarda, Nhat Pham

Concrete Mathematics: Exploring Sums

May 20, 2018 8 / 24

Perturbation

Start with an unknown sum and call it

$$S_n + a_{n+1} = \sum_{0 \le k \le n+1} a_k = a_0 + \sum_{1 \le k \le n+1} a_k$$
$$= a_0 + \sum_{1 \le k+1 \le n+1} a_{k+1}$$
$$= a_0 + \sum_{0 \le k \le n} a_{k+1}$$

This expression can then be simply expressed in terms of S_n

$$S_n = \sum_{0 \le k \le n} k 2^k$$

We then have

$$S_n + (n+1)2^{n+1} = \sum_{0 \le k \le n} (k+1)2^{(k+1)}$$

Using the associative property gives

$$\sum_{0 \le k \le n} k 2^{(k+1)} + \sum_{0 \le k \le n} 2^{(k+1)}$$

The first sum is simply $2S_n$ The second sum is just a geometric progression that yields $2^{n+2} - 2$ Therefore, the total sum becomes

 $(n-1)2^{n+1}+2$

Multiple Sums

The terms of a sum might be specified by two or more indices.

General Distributive Law

$$\sum_{j\in J,k\in K}a_jb_k=(\sum_{j\in J}a_j)+(\sum_{k\in K}b_k)$$

Evaluate

$$S_n = \sum_{1 \le j < k \le n} \frac{1}{k - j}$$

Replace k with k + j

$$=\sum_{1\leq j< k+j\leq n}\frac{1}{k}$$

Summing on j, which is trivial, gives

$$=\sum_{1\leq k\leq n}\sum_{1\leq j\leq n-k}\frac{1}{k}=\sum_{1\leq k\leq n}\frac{n-k}{k}$$

Then, by the associative law, we have

$$\sum_{1 \le k \le n} \frac{n}{k} - \sum_{1 \le k \le n} 1 = n(\sum_{1 \le k \le n} \frac{1}{k}) - n$$

This has the harmonic mean, and is a final answer for the original sum.

Difference Operator, Definite Sum, and Shift

$$\Delta f(x) = f(x+1) - f(x)$$
$$\sum_{a}^{b} g(x)\delta x = \sum_{a \le k < b} g(k)$$
$$Ef(x) = f(x+1)$$

Anmol Sakarda, Nhat Pham

Concrete Mathematics: Exploring Sums

May 20, 2018 15 / 24

Properties

Multiplicative Rule:

$$\Delta fg = f \Delta g + Eg \Delta f$$

Integration analogue

$$\sum_{a}^{b} g(x)\delta x = -\sum_{b}^{a} g(x)\delta x$$

$$\sum_{a}^{b} g(x)\delta x + \sum_{b}^{c} g(x)\delta x = \sum_{a}^{c} g(x)\delta x$$

э

Properties (cont.)

Fundamental Theorem of (Finite) Calculus:

$$g(x) = \Delta f(x) \Rightarrow \sum_{a}^{b} g(x) = f(b) - f(a)$$

Chain Rule:

$$\sum u\Delta v = uv - \sum Ev\Delta u$$

Definition

Rising and Falling Powers

$$\forall m > 0 : x^{\underline{m}} = x(x-1)(x-2)...(x-m+1)$$

$$\forall m > 0 : x^{\overline{m}} = x(x+1)(x+2)...(x+m-1)$$

$$x^{\underline{0}} = x^{\overline{0}} = 1$$

$$\forall m > 0 : x^{\underline{-m}} = \frac{1}{(x+1)(x+2)...(x+m)}$$

$$\forall m > 0 : x^{\overline{-m}} = \frac{1}{(x-1)(x-2)...(x-m)}$$

Properties of Rising and Falling Powers

$$\Delta x^{\underline{m}} = mx^{\underline{m-1}}$$
$$\sum_{0 \le k < n} k^{\underline{m}} = \frac{n^{\underline{m+1}}}{m+1}$$
$$\sum_{a \le k < b} c^k = \frac{c^b - c^a}{c-1}$$

Anmol Sakarda, Nhat Pham

Concrete Mathematics: Exploring Sums

May 20, 2018 19 / 24

Definition

Infinite Series: Suppose $a_k \ge 0 \forall k \in K$. If there is a number A such that for any finite $F \subset K$:

$$\sum_{k\in F} \mathsf{a}_k \leq A$$

Then $\sum_{k \in K} a_k$ exists and is equal to the least such A.

Generalization for any (multi-dimensional) index set K and any sequence a_k :

$$A = \sum_{k \in \mathcal{K}} a_k = \sum_{k \in \mathcal{K}} a_k^+ - \sum_{k \in \mathcal{K}} a_k^-$$

where:

$$a_k^+ = a_k \cdot [a_k > 0]$$

 $a_k^- = a_k \cdot [a_k < 0]$

We have the following scenarios:

- A^+ and A^- are finite: A converges absolutely to $A^+ + A^-$.
- A^+ is infinite, A^- is finite: A diverges to ∞ .
- A^- is infinite, A^+ is finite: then A diverges to $-\infty$.
- A^+ and A^- are infinite: A is undefined.

Fundamental Principle of Multiple Sums

Absolutely convergent sums over 2 or more indices can always be summed first with respect to any one of those indices.

Formally, if J and the elements of $\{K_j | j \in J\}$ are sets of indices such that:

$$\sum_{j \in J, k \in \mathcal{K}_j} a_{j,k}$$
 converges absolutely to A

Then there exists A_j for each $j \in J$ such that

$$\sum_{k\in \mathcal{K}_j} a_{j,k}$$
 converges absolutely to A_j

$$\sum_{j \in J} A_j \text{ converges absolutely to } A$$